# <u>Ramgarhia Polytechnic College,</u> <u>Phagwara</u>



**Civil Engineering Department** 

# **Civil Engineering Department**

| Head of Department: | Er. Gurcharan | Singh |
|---------------------|---------------|-------|
| neau of Department. | EL GUICHAIAH  | Singn |

3<sup>rd</sup>

Name of the Faculty: Er. Rahul verma

Discipline:

Semester:

Subject: Fluid Mechanics

Lesson Plan Duration: 16 Weeks

#### RATIONALE

Subject of Fluid Mechanics is a basic engineering subject and helps in solving fluid flow problems in the field of Civil Engineering. The subject deals with basic concepts and principles in hydrostatics, hydro kinematics

and hydrodynamics and their application in solving fluid -mechanics problems.

#### **Learning Outcomes**

After undergoing the subject, students will be able to:

- Interpret the different terms related to fluids.
- Calculate the pressure exerted by fluids on the walls of containers.
- Calculate discharge through pipes, irrigation channels, water supply pipe lines.
- Use different flow measurement devices like venturimeter, mouthpiece, notches, weir, orificemeter
- Calculate size of the pipe for carrying a particular discharge.
- Prepare the details like dimensions, slope of the irrigation, canals and water courses
- Differentiate between different type of water pumps used in the field.
- Measure the loss of head in pipes and channels

| PO  | $\Rightarrow$ | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|-----|---------------|-----|-----|-----|-----|-----|-----|-----|
| CO  | $\Box$        |     |     |     |     |     |     |     |
| CO1 |               |     |     |     |     |     |     |     |
| CO2 |               |     |     |     |     |     |     |     |
| CO3 |               |     |     |     |     |     |     |     |
| CO4 |               |     |     |     |     |     |     |     |
| CO5 |               |     |     |     |     |     |     |     |
| CO6 |               |     |     |     |     |     |     |     |

| CO7 |  |  |  |  |
|-----|--|--|--|--|
| CO8 |  |  |  |  |
| CO9 |  |  |  |  |

# Syllabus

| Units | Details                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hours   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1.    | Introduction<br>1.1 Fluids: Real and ideal fluids<br>1.2 Fluid Mechanics, Hydrostatics, Hydrodynamics,<br>Hydraulics                                                                                                                                                                                                                                                                                                                          | (1 hrs) |
| 2.    | 2. Properties of Fluids (definition only)<br>2.1 Mass density, specific weight, specific gravity,<br>viscosity, surface tension - cohesion, adhesion and,<br>capillarity, vapour pressure and compressibility.                                                                                                                                                                                                                                | (3 hrs) |
| 3.    | <ul> <li>3. Hydrostatic Pressure</li> <li>3.1 Pressure, intensity of pressure, pressure head,</li> <li>Pascal's law and its applications.</li> <li>3.2 Total pressure, resultant pressure, and centre of pressure.</li> <li>3.3 Total pressure and centre of pressure on horizontal, vertical and inclined plane surfaces of rectangular, triangular, trapezoidal shapes and circular. (No derivation - Simple Numerical Problems)</li> </ul> | (8 hrs) |

| 4. | <ul> <li>4. Measurement of Pressure</li> <li>4.1 Atmospheric pressure, gauge pressure, vacuum pressure and absolute pressure.</li> <li>4.2 Piezometer, simple manometer and differential manometer, Bourden gauge and dead weight pressure gauge</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                     | (5 hrs)  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 5. | Fundamentals of Fluid Flow<br>5.1 Types of Flow: Steady and unsteady flow, laminar<br>and turbulent flow, uniform and non-uniform flow<br>5.2 Discharge and continuity equation (flow equation) {No<br>derivation}<br>5.3 Types of hydraulic energy: Potential energy, kinetic<br>energy, pressure energy 5.4 Bernoulli's theorem;<br>statement and description (without proof of theorem)                                                                                                                                                                                                                                                                      | (6hrs)   |
| 6. | <ul> <li>6. Flow Measurements (brief description with simple numerical problems)</li> <li>6.1 Venturimeter and mouthpiece</li> <li>6.2 Pitot tube</li> <li>6.3 Orifices and mouthpieces</li> <li>6.4 Current meters</li> <li>6.5 Notches and weirs (simple numerical problems)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                       | (06 hrs) |
| 7. | <ul> <li>7. Flow through Pipes</li> <li>7.1 Definition of pipe flow; Reynolds number, laminar<br/>and turbulent flow - explained through Reynold's<br/>experiment</li> <li>7.2 Critical velocity and velocity distributions in a pipe for<br/>laminar flow</li> <li>7.3 Head loss in pipe lines due to friction, sudden<br/>expansion and sudden contraction, entrance, exit,<br/>obstruction and change of direction (No derivation of<br/>formula)</li> <li>7.4 Hydraulic gradient line and total energy line</li> <li>7.5 Pipes in series and parallel</li> <li>7.6 Water hammer phenomenon and its effects (only<br/>definition and description)</li> </ul> | (08 hrs) |

| 8 | <ul> <li>8. Flow through open channels:</li> <li>8.1 Definition of an open channel, uniform flow and non-<br/>uniform flow</li> <li>8.2 Discharge through channels using i) Chezy's formula<br/>(no derivation) ii) Manning's formula (no derivation)</li> <li>8.3 Most economical channel sections (no derivation) i)</li> <li>Rectangular ii) Trapezoidal</li> <li>8.4 Head loss in open channel due to friction</li> </ul> | (9hrs)  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 9 | Hydraulic Pumps<br>Hydraulic pump, reciprocating pump, centrifugal pumps<br>(No numerical and derivations) (may be demonstrated<br>with the help of working models) Note: Visit to Hydraulic<br>research station is must to explain the various concepts                                                                                                                                                                      | (2 hrs) |

#### **Reference Books:**

- 1. Jagdish Lal, "Fluid Mechanics and Hyraulics" Delhi Metropolitan Book Co. Pvt Ltd.
- 2. Modi, PN, and Seth, SM; "Hydraulics and Fluid Mechanics", Delhi Standard Publishers Distributors.
- 3. Khurmi RS, "Hydraulics and Hydraulics Machines", Delhi S Chand and Co.
- 4. Poonia MP and Jakhar OP, "Laboratory Manual for Fluid Mechanics"; Standard Publishers Distributors, Delhi 4. Likhi SK., Laboratory Manual in Hydraulics, Delhi Wiley Eastern.
- 5. Birinder Singh, "Fluid Mechanics", Kaption Publishing, New Delhi.
- 6. Sarao A.S., "Fluid Mechanics", Tech. India Publication, New Delhi

#### **Delivery/Instructional Methodologies**

| Sr.No. | Description             |  |  |  |
|--------|-------------------------|--|--|--|
| 1.     | Chalk and Talk          |  |  |  |
|        |                         |  |  |  |
| 2.     | PowerPoint Presentation |  |  |  |
|        |                         |  |  |  |

## **Assessment Methodologies**

| Sr. No. | Description        | Туре   |
|---------|--------------------|--------|
| 1.      | Student Assignment | Direct |
| 2.      | Test               | Direct |
| 3.      | Board Examination  | Direct |
| 4.      | Student Feedback   | Direct |

## Gaps in the syllabus - to meet industry/profession requirements

| S.NO. | DESCRIPTION | PROPOSED<br>ACTIONS | PO<br>MAPPING |
|-------|-------------|---------------------|---------------|
|       | N/A         | N/A                 | N/A           |

## Topics beyond syllabus/advanced topics

| Units | Details | Hours |
|-------|---------|-------|
| N/A   | N/A     | N/A   |

#### Web Source References

| Sr. No. | URL                  |
|---------|----------------------|
| 1.      | https://nptel.ac.in/ |

#### Lesson Plan

| Week            |                 | Theory                                    |           | Practical                   |
|-----------------|-----------------|-------------------------------------------|-----------|-----------------------------|
|                 | Lecture         |                                           | Practical |                             |
|                 | Day             |                                           | Day       |                             |
|                 | 1 <sup>st</sup> | Introduction                              |           | To verify Bernoullis        |
|                 |                 | 1.1 Fluids: Real and                      |           | Theorem                     |
| 4 ct            |                 | ideal fluids                              |           |                             |
| 1 <sup>st</sup> |                 | 1.2 Fluid Mechanics,                      | 1.        |                             |
|                 |                 | Hydrostatics,                             |           |                             |
|                 |                 | Hydrodynamics,                            |           |                             |
|                 | 2 <sup>nd</sup> | Hydraulics<br>Properties of Fluids        |           |                             |
|                 | 2               | (definition only) Mass                    |           |                             |
|                 |                 | density, specific                         |           |                             |
|                 |                 | weight, specific                          |           |                             |
|                 |                 | gravity, viscosity                        |           |                             |
|                 | 3 <sup>rd</sup> | Surface tension -                         |           |                             |
|                 |                 | cohesion, adhesion                        |           |                             |
|                 |                 | and, capillarity,                         |           |                             |
|                 |                 | vapour pressure and                       |           |                             |
|                 | 4 th            | compressibility                           |           | <b>T</b> () 1 (             |
| 2 <sup>nd</sup> | 4 <sup>th</sup> | Vapour pressure and                       | 0         | To find out                 |
|                 |                 | compressibility                           | 2.        | venturimeter<br>coefficient |
|                 | 5 <sup>th</sup> | Lludraatatia Draaaurau                    |           | coemcient                   |
|                 | <b>D</b>        | Hydrostatic Pressure:                     |           |                             |
|                 |                 | Pressure, intensity of pressure, pressure |           |                             |
|                 |                 | head,                                     |           |                             |
|                 | 6 <sup>th</sup> | Pascal's law and its                      |           |                             |
|                 |                 | applications                              |           |                             |
|                 | 7 <sup>th</sup> | Total pressure,                           |           | To determine                |
|                 |                 | resultant pressure,                       |           | coefficient of              |
|                 |                 | and centre of                             |           | velocity (Cv),              |
| e rd            |                 | pressure                                  | 3         | Coefficient of              |
| 3 <sup>rd</sup> | 8 <sup>th</sup> | Total pressure and                        |           | discharge (Cd)              |
|                 |                 | centre of pressure on                     |           | Coefficient of              |
|                 |                 | horizontal, vertical                      |           | contraction (Cc) of         |

|                 |                  | and inclined plane<br>surfaces of<br>rectangular,<br>triangular, trapezoidal<br>shapes and circular.<br>(No derivation -<br>Simple Numerical<br>Problems                                                                        |   | an orifice and verify<br>the relation<br>between them. |
|-----------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------|
|                 | 9 <sup>th</sup>  | Total pressure and<br>centre of pressure on<br>horizontal, vertical<br>and inclined plane<br>surfaces of<br>rectangular,<br>triangular, trapezoidal<br>shapes and circular.<br>(No derivation -<br>Simple Numerical<br>Problems |   |                                                        |
| 4 <sup>th</sup> | 10 <sup>th</sup> | Total pressure,<br>resultant pressure,<br>and centre of<br>pressure                                                                                                                                                             | 4 | To perform<br>Reynold's<br>experiement                 |
|                 | 11 <sup>th</sup> | Total pressure and<br>centre of pressure on<br>horizontal, vertical<br>and inclined plane<br>surfaces of<br>rectangular,<br>triangular, trapezoidal<br>shapes and circular.<br>(No derivation -<br>Simple Numerical<br>Problems |   |                                                        |
|                 | 12 <sup>th</sup> | Total pressure and<br>centre of pressure on<br>horizontal, vertical<br>and inclined plane<br>surfaces of<br>rectangular,                                                                                                        |   |                                                        |

|                 |                  | triangular, trapezoidal<br>shapes and circular.<br>(No derivation -<br>Simple Numerical<br>Problems            |   |                                                                                     |
|-----------------|------------------|----------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------|
| 5 <sup>th</sup> | 13 <sup>th</sup> | Measurement of<br>Pressure                                                                                     | 5 | To verify loss of<br>head in pipe flow                                              |
|                 | 14 <sup>th</sup> | Atmospheric<br>pressure, gauge<br>pressure, vacuum<br>pressure and absolute<br>pressure.                       |   | due to (a) Sudden<br>enlargement b)<br>Sudden contraction<br>c) Sudden bend         |
|                 | 15 <sup>th</sup> | Piezometer, simple manometer                                                                                   |   |                                                                                     |
| 6 <sup>th</sup> | 16 <sup>th</sup> | Differential manometer                                                                                         |   | Demonstration of use of current                                                     |
|                 | 17 <sup>th</sup> | Bourden gauge and dead weight pressure gauge                                                                   | 6 | meter and pitot<br>tube                                                             |
|                 | 18 <sup>th</sup> | Fundamentals of Fluid<br>Flow                                                                                  |   |                                                                                     |
| 7 <sup>th</sup> | 19 <sup>th</sup> | Types of Flow: Steady<br>and unsteady flow,<br>laminar and turbulent<br>flow, uniform and non-<br>uniform flow | 7 | To determine<br>coefficient of<br>discharge of a<br>rectangular<br>notch/triangular |
|                 | 20 <sup>th</sup> | Types of Flow: Steady<br>and unsteady flow,<br>laminar and turbulent<br>flow, uniform and non-<br>uniform flow |   | notch.                                                                              |
|                 | 21st             | Discharge and<br>continuity equation<br>(flow equation) {No<br>derivation                                      |   |                                                                                     |
| 8 <sup>th</sup> | 22 <sup>nd</sup> | Types of hydraulic<br>energy: Potential<br>energy, kinetic                                                     | 8 | To perform<br>Reynold's<br>experiement                                              |

|                  |                  | energy, pressure           |    |                    |
|------------------|------------------|----------------------------|----|--------------------|
|                  |                  | energy                     |    |                    |
|                  | 23 <sup>rd</sup> | Bernoulli's theorem;       |    |                    |
|                  | 20               | statement and              |    |                    |
|                  |                  | description (without       |    |                    |
|                  |                  | proof of theorem)          |    |                    |
|                  | 24 <sup>th</sup> | Flow Measurements          |    |                    |
|                  | 24               |                            |    |                    |
|                  |                  | (brief description with    |    |                    |
|                  |                  | simple numerical problems) |    |                    |
|                  | 25 <sup>th</sup> | Venturimeter and           |    | To verify loss of  |
| 9 <sup>th</sup>  | 25               | mouthpiece                 | 9  | head in pipe flow  |
| 5                | 26 <sup>th</sup> | Current meters             | 5  | due to (a) Sudden  |
|                  | 20               |                            |    | enlargement b)     |
|                  | 27 <sup>th</sup> | Orifices and               |    | Sudden contraction |
|                  | 21               | mouthpieces                |    | c) Sudden bend     |
|                  |                  | moumpieces                 |    | o) edución sonta   |
| 10 <sup>th</sup> | 28 <sup>th</sup> | Pitot tube                 | 10 | Demonstration of   |
|                  | 20               |                            |    | use of current     |
|                  | 29 <sup>th</sup> | Notches and weirs          | •  | meter and pitot    |
|                  |                  | (simple numerical          |    | tube               |
|                  |                  | problems)                  |    |                    |
|                  | 30 <sup>th</sup> | Flow through Pipes         |    |                    |
|                  |                  |                            |    |                    |
| 11 <sup>th</sup> | 31 <sup>st</sup> | Definition of pipe flow;   |    | To find out        |
|                  |                  | Reynolds number,           |    | venturimeter       |
|                  |                  | laminar and turbulent      |    | coefficient        |
|                  |                  | flow - explained           |    |                    |
|                  |                  | through Reynold's          | 11 |                    |
|                  |                  | experiment                 |    |                    |
|                  | 32 <sup>nd</sup> | Critical velocity and      | 1  |                    |
|                  | _                | velocity distributions     |    |                    |
|                  |                  | in a pipe for laminar      |    |                    |
|                  |                  | flow                       |    |                    |
|                  | 33 <sup>rd</sup> | Head loss in pipe          |    |                    |
|                  | _                | lines due to friction,     |    |                    |
|                  |                  | sudden expansion           |    |                    |
|                  |                  | and sudden                 |    |                    |
|                  |                  | contraction, entrance,     |    |                    |
|                  | 1                |                            | l  |                    |

|                  |                  | exit, obstruction and    |    |                      |
|------------------|------------------|--------------------------|----|----------------------|
|                  |                  | change of direction      |    |                      |
|                  |                  | (No derivation of        |    |                      |
|                  |                  | •                        |    |                      |
|                  | <b>O</b> 4th     | formula)                 |    | Tanarifalaaaaf       |
| 1 Oth            | 34 <sup>th</sup> | Hydraulic gradient line  |    | To verify loss of    |
| 12 <sup>th</sup> |                  | and total energy line    |    | head in pipe flow    |
|                  | 35 <sup>th</sup> | Water hammer             | 12 | due to (a) Sudden    |
|                  |                  | phenomenon and its       |    | enlargement b)       |
|                  |                  | effects (only definition |    | Sudden contraction   |
|                  |                  | and description.         |    | c) Sudden bend       |
|                  | 36 <sup>th</sup> | Pipes in series and      |    |                      |
|                  |                  | parallel                 |    |                      |
| 13 <sup>th</sup> | 37 <sup>th</sup> | Head loss in pipe        |    | To verify loss of    |
|                  |                  | lines due to friction,   | 13 | head in pipe flow    |
|                  |                  | sudden expansion         |    | due to (a) Sudden    |
|                  |                  | and sudden               |    | enlargement b)       |
|                  |                  | contraction, entrance,   |    | Sudden contraction   |
|                  |                  | exit, obstruction and    |    | c) Sudden bend       |
|                  |                  | change of direction      |    |                      |
|                  |                  | (No derivation of        |    |                      |
|                  |                  | formula)                 |    |                      |
|                  | 38 <sup>th</sup> | Flow through open        |    |                      |
|                  |                  | channels:                |    |                      |
|                  | 39 <sup>th</sup> | Definition of an open    |    |                      |
|                  |                  | channel, uniform flow    |    |                      |
|                  |                  | and non-uniform flow     |    |                      |
|                  | 40 <sup>th</sup> | Discharge through        |    | To verify Bernoullis |
| 14 <sup>th</sup> |                  | channels using           |    | Theorem              |
|                  |                  | i) Chezy's formula (no   |    |                      |
|                  |                  | derivation               |    |                      |
|                  | 41 <sup>st</sup> | ii) Manning's formula    | 14 |                      |
|                  |                  | (no derivation)          |    |                      |
|                  | 42 <sup>nd</sup> | Most economical          |    |                      |
|                  |                  | channel sections (no     |    |                      |
|                  |                  | derivation) i)           |    |                      |
|                  |                  | Rectangular ii)          |    |                      |
|                  |                  | Trapezoidal              |    |                      |
| 15 <sup>th</sup> | 43 <sup>rd</sup> | Head loss in open        | 15 | To verify loss of    |
|                  |                  | channel due to friction  | 10 | head in pipe flow    |
|                  |                  |                          |    |                      |

|                  | 44 <sup>th</sup> | Head loss in pipe<br>lines due to friction,<br>sudden expansion<br>and sudden<br>contraction, entrance,<br>exit, obstruction and<br>change of direction<br>(No derivation of<br>formula) |    | due to (a) Sudden<br>enlargement b)<br>Sudden contraction<br>c) Sudden bend |
|------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------|
|                  | 45 <sup>th</sup> | Most economical<br>channel sections (no<br>derivation) i)<br>Rectangular ii)<br>Trapezoidal                                                                                              |    |                                                                             |
| 16 <sup>th</sup> | 46 <sup>th</sup> | Head loss in open channel due to friction                                                                                                                                                |    | VIVA                                                                        |
|                  | 47 <sup>th</sup> | Hydraulic Pumps<br>Hydraulic pump,<br>reciprocating pump                                                                                                                                 | 16 |                                                                             |
|                  | 48 <sup>th</sup> | Centrifugal pumps<br>(No numericals and<br>derivations) (may be<br>demonstrated with the<br>help of working<br>models                                                                    | -  |                                                                             |

# NBA has defined the following seven POs for an Engineering diploma graduate:

i) **Basic and Discipline specific knowledge**: Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.

ii) **Problem analysis:** Identify and analyze well-defined engineering problems using codified standard methods.

iii) **Design/ development of solutions**: Design solutions for welldefined technical problems and assist with the design of systems components or processes to meet specified needs.

iv) **Engineering Tools, Experimentation and Testing**: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.

v) Engineering practices for society, sustainability and environment: Apply appropriate technology in context of society, sustainability, environment and ethical practices.

vi) **Project Management**: Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.

vii) **Life-long learning**: Ability to analyze individual needs and engage in updating in the context of technological changes.

# Program Specific Outcomes (PSOs)

PSOs are a statement that describes what students are expected to know and be able to do in a specialized area of discipline upon graduation from a program. Program may specify 2-4 program specific outcomes, if required.

These are the statements, which are specific to the particular 11 program. They are beyond POs. Program Curriculum and other activities during the program must help in the achievement of PSOs along with POs.