Ramgarhia Polytechnic College, Phagwara

Electrical Engineering Department

Head of Department:	S. Jasvir Singh
Name of the Faculty:	Er. Rahul Bahl
Discipline:	Electrical Engineering Department
Semester:	3 rd
Subject:	Fundamental ELECTRICAL ENGINEERING
Lesson Plan Duration:	16 Weeks

RATIONALE

For a diploma holder in electrical engineering, it becomes imperative to know the fundamentals of the subject in order to grasp the knowledge of the field. This subject will provide acquaintance with various terms knowledge of fundamental concepts of electricity, magnetism and various principles related to it.

Learning Outcomes

After undergoing this course, the students will be able to:

- CO1. Verify the laws related to basics of electrical engineering.
- CO2. Solve electrical and electronics networks by applying various network theorems
- CO3. Use various batteries and their care, maintenance
- CO4. Develop a relation between electric current and magnetism and vice-versa.
- CO5. Convert mechanical energy to electrical energy.
- CO6. Apply electromagnetic induction principles in various electrical equipment
- CO7. Connect AC circuits.

PO ⇒	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO I							
CO1							
CO2							
CO3							
CO4							
CO5							
CO6							
C07							
CO8							
CO9							

Syllabus

Units	Details	Hours
1.	Introduction to Fundamental of Electrical Engg.	(04 hrs)
	1.1Application and Advantages of Electrical Energy	
	1.3 Advantages of electrical energy lises of electrical energy	
	1.4 Basic Electrical Quantities Basic concent of charge	
	1.5 current voltage resistance nower energy and their units	
	1.6 Conversion of units of work, power and energy from one form to	
	another	
2.	DC Circuits	(10 hrs)
	2.1 Ohm's law, resistances in series and parallel	(20
	2.2 Kirchhoff's laws and their applications in solving electrical network	
	proble	
	2.3 Network theorems such as Thevenin's theorem, superposition	
	theorem Maximum power and transfer theorem and Norton's theorem	
	2.4 Star-delta transformation	
3.	Batteries	(06 hrs)
	3.1 Basic idea about primary and secondary cells	
	3.2 Working principle, construction and applications of Lead acid, Nickel	
	Cadmium and Silver Oxide Cells	
	3.3 Charging methods used for lead acid accumulator	
	3.4 Care and maintenance of a lead acid battery	
	3.5 Grouping of cells in series and parallel (simple numerical problems).	
4.	Magnetism and Electromagnetism	(08 hrs)
	4.1 Introduction to electromagnetism, Magnetic field around a straight	
	current carrying conductor and a solenoid and methods to find its	
	direction, force between two parallel current carrying conductors.	
	4.2 Force on a conductor placed in the magnetic field	
	4.3 Series magnetic circuits, simple problems	
-	4.4 Concept of hysteresis, loop and hysteresis loss	
5.	Electromagnetic induction	(09 hrs)
	5.1. Faraday's Laws of electromagnetic induction	
	5.2. Lenz's law 5.3. Fieming's Right and Left Hand Rule	
	5.4. Principle of self and mutual induction	
	5.6. Inductances in series and narallel	
	5.7 Energy stored in a magnetic field	
	5.8 Concent of eddy currents eddy current loss	
6	AC Fundamentals	(10 hrs)
0.	6.1 Concept of A C generation (single phase and three phase)	(101112)
	6.2. Difference between A.C and D.C	

	 6.3. Concept of alternating current and voltage, equation of instantaneous values, average value, r.m.s value, form factor, power factor etc. 6.4. Concept of phasor and phase difference. 6.5. Representation of alternating sinusoidal quantities by vectors 6.6. Phasor algebra (addition, subtraction, multiplication and division of complex quantities) 	
7.	AC Circuits 7.1. AC through pure resistance, inductance and capacitance 7.2. Alternating voltage applied to RL,RC and RLC series and parallel circuits (impedance triangle, phasor diagram and their solutions) 7.3. Introduction to susceptance, conductance and admittance 7.4. Power in pure resistance, inductance, capacitance, RL, RC, RLC circuits 7.5. Active and reactive components of current and their significance 7.6. Power factor and its practical significance	(16 hrs)

Reference Books:

- 1. Fundamentals of Electrical Engineering by Sahdev, Uneek Publication, Jalandhar
- 2. Basic Electrical Engineering by PS Dhogal, Tata McGraw Hill Education Pvt. Ltd., New Delhi
- 3. Electrical Science by VK Mehta, S Chand and Co., New Delhi
- 4. Electrical Engineering by DR Arora, Ishan Publications, Ambala
- 5. Electrical Technology by JB Gupta, SK Kataria and Sons, New Delhi
- 6. Electrical Technology by BL Theraja, S Chand & Co., New Delhi

7. Electrical Science by S. Chandhni, R Chakrabarti and PK Chattopadhyay. Narosa Publishing House Pvt. Ltd., New Delhi

- 8. Basic Electrical Engineering by Mool Singh, Galgotia Publication Pvt. Ltd., New Delhi
- 9. Principles of Electrical Engineering by BR Gupta, S Chand & Co., New Delhi
- 10. Handbook of Electrical Engineering by SL Bhatia, Khanna Publishers, New Delhi

Delivery/Instructional Methodologies

Sr.No.	Description
1.	Chalk and Talk
2.	PowerPoint Presentation

Assessment Methodologies

Sr. No.	Description	Туре
1	Student Assignment	Direct
۲.	Student Assignment	Direct
2.	Test	Direct
3.	Board Examination	Direct
4.	Student Feedback	Direct

Gaps in the syllabus - to meet industry/profession requirements

S.NO.	DESCRIPTION	PROPOSED ACTIONS	PO MAPPING
	N/A	N/A	N/A

Topics beyond syllabus/advanced topics

Units	Details	Hours
N/A	N/A	N/A

Web Source References

Sr. No.	URL
1.	https://nptel.ac.in/

Lesson Plan

Week		Theory	Practical	
	Lecture Day		Practical Day	
	1 st	Application and Advantages of Electrical Energy Different forms of energy		1.Determination of voltage- current relationship in a dc circuit under specific physical conditions and to
150	2 nd	Advantages of electrical energy Uses of electrical energy Basic Electrical Quantities Basic concept of charge	1.	draw conclusions (to verify ohm's law) Group I
	3 rd	Basic concept of charge, current, voltage, resistance, power, energy and their units		
	4 th	Conversion of units of work, power and energy from one form to another.		
2 nd	5 th	Ohm's law, resistances in series and parallel	2.	Determination of voltage- current relationship in a dc
	6 th	applications in solving electrical network problems		physical conditions and to draw conclusions (to verify
	7 th	Network theorems such as Thevenin's theorem		Group II
	8 th			

		superposition theorem		
	Qth	Maximum power and		2 Eilamont Jamp Moasuro
	5	transfer theorem and		the resistance of a cold
		Norton's theorem		lamp filament with the help
	10 th			of calculations Measure
			3.	the current drawn by the
3 rd	11 th			lamp at different voltages
_				from zero to 220 volts and
	1 a th			the resistance of lamp at
	12"	Star-delta transformation		different voltages, plot a
				graph between current and
				voltage
				Group I
	13 ^m			2. Filament lamp Measure
				the resistance of a cold
	14 th			lamp filament with the help
4 th		Basic idea about primary		of calculations. Measure
	1 5 th	and secondary cells	А	lamp at different voltages
	15	Working principle,	ч.	from zero to 220 volts and
		construction and		the resistance of lamp at
		applications of Lead acid,		different voltages, plot a
		Nickel Cadmium and Silver		graph between current and
		Oxide Cells		voltage
	16 th	Charging methods used for		Group II
		lead acid accumulator		
		Care and maintenance of a		
		lead acid battery		
		Grouping of cells in series		
		and parallel (simple		
		numerical problems).		
	17 th	Introduction to		3. (a) To verify that Rt =
		electromagnetism,		R1+R2+ where R1, R2
		Magnetic field around a		etc. are resistances
⊑th		straight current carrying		(b) To vorify $1 \ 1 \ 1 \ 1 \ - \ +$
5		conductor and a solenoid	-	(b) 10 verify 1 1 1 1 +
		and methods to find its	5.	Rm Where R1, R2 etc. are
		direction, force between		resistances connected in
		two parallel current		parallel
		carrying conductors		Group I
	18 th	Force on a conductor		
		placed in the magnetic field		
	19 th			

	20 th	Series magnetic circuits, simple problems Concept of hysteresis, loop and hysteresis loss		
6 th	21st 22 nd	Faraday's Laws of electromagnetic induction. Lenz's law. Fleming's Right and Left Hand Rule	6.	3. (a) To verify that Rt = R1+R2+ where R1, R2 etc. are resistances connected in series (b) To verify 1 1 1 1 = + + + Rt R1 R2
	23 rd	REVISION 1 st Sessional Test		resistances connected in parallel Group II
	24	(Tentative)		
	25 th	Principle of self and mutual induction		4. Verification of Kirchhoff's current and
7 th	26 th	Principle of self and	7.	voltage laws applied to DC circuits a) to construct a circuit arrangement consisting of resistances in series, parallel combination b) identification of node points in the circuit c) to
	27 th	mutually induced e.m.f. and simple problems Inductances in series and parallel		
	28 th	Energy stored in a magnetic field		see that algebraic sum of currents at node point is zero d) to see that algebraic sum of emfs and voltage drops in a closed loop is zero Group I
	29 th	Concept of eddy currents		4. Verification of Kirchhoff's current and
8 th	30 th	eddy current loss		circuits a) to construct a circuit arrangement
	31 st	Concept of A.C. generation	8.	consisting of resistances in series, parallel combination
	32 nd	(single phase and three phase) Difference between A.C and D.C		points in the circuit c) to see that algebraic sum of currents at node point is zero d) to see that algebraic sum of emfs and voltage drops in a closed loop is zero Group II

9 th	33 rd 34 th 35 th 36 th	Concept of alternating current and voltage, equation of instantaneous values, average value, r.m.s value, form factor, power factor etc. Concept of phasor and phase difference. Representation of alternating sinusoidal quantities by vectors	9.	5. To find ratio of inductance values of a coil having air /iron core respectively and to see the effect of introduction of a magnetic core on coil inductance Group I
	37 th	Phasor algebra (addition, subtraction, multiplication and division of complex quantities)		5. To find ratio of inductance values of a coil having air /iron core respectively and to see the offect of introduction of a
10 th	38 th	AC through pure resistance, inductance and	10.	magnetic core on coil inductance
	39 th	voltage applied to RL,RC		Group II
	40 th			
	41 st			6. To construct an RL and RC circuit and to measure
11 th	42 nd	RLC series and parallel circuits (impedance triangle, phasor diagram	11.	phase angle between voltage and current c) construct impedance
	43 rd			Group I
	44 th	REVISION		
	45 th	РТМ		6. To construct an RL and RC circuit and to measure
12 th	46 th	2 nd Sessional Test (Tentative) Introduction to susceptance, conductance	12.	phase angle between voltage and current c) construct impedance triangle
	47 th			
	48 th	and admittance Power in pure resistance		

13 th	49 th 50 th 51 st	Power in inductance, capacitance, RL, RC, RLC circuits	13.	7. Measurement of power and power factor of a single phase RLC circuit. To calculate KVA and KVAR Group I
	52 ^{na}			
14 th	53 rd	Active and reactive components of current and their significance	14	7. Measurement of power and power factor of a single phase RLC circuit. To calculate KVA and KVAR Group II
	54 th			
	55 th			
	56 th			
15 th	57 th	Introduction of Power factor		8. Testing a battery for its charged condition and to
	58 th	practical significance Of power factor	15.	Group I
	59 th			
	60 th	Simple numerical realted to RLC circuit		
16 th	61 st	PTM REVISION 3 rd Sessional Test (Tentative)	16.	8. Testing a battery for its charged condition and to charge it Group II
	62 nd			
	63 rd			
	64 th			

NBA has defined the following seven POs for an Engineering diploma graduate:

i) **Basic and Discipline specific knowledge**: Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.

ii) **Problem analysis:** Identify and analyze well-defined engineering problems using codified standard methods.

iii) **Design/ development of solutions**: Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.

iv) **Engineering Tools, Experimentation and Testing**: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.

v) **Engineering practices for society, sustainability and environment**: Apply appropriate technology in context of society, sustainability, environment and ethical practices.

vi) **Project Management**: Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.

vii) **Life-long learning**: Ability to analyze individual needs and engage in updating in the context of technological changes.

Program Specific Outcomes (PSOs)

PSOs are a statement that describes what students are expected to know and be able to do in a specialized area of discipline upon graduation from a program. Program may specify 2-4 program specific outcomes, if required.

These are the statements, which are specific to the particular 11 program. They are beyond POs. Program Curriculum and other activities during the program must help in the achievement of PSOs along with POs.