<u>Ramgarhia Polytechnic College,</u> <u>Phagwara</u>

Electronics and Communication Engineering Department

Head of Department:	Er. Simranjit Singh			
Name of the Faculty:	Er. Inderjeet kaur			
Discipline:	ECE			
Semester:	3 rd			
Subject:	Electronic Device & circuits			
Lesson Plan Duration:	16 Weeks			

RATIONALE

Having attained basic knowledge of electronic devices like diodes, transistors, and elementary circuits, in second semester, this course will enable the students to learn about the use of transistors in analog circuits like power amplifier, multistage amplifier, oscillators, wave shaping circuits and in multivibrators etc. It also gives information about timer, operational amplifier, voltage regulator, ICs and their applications for effective functioning in the field of electronic service industry

LEARNIG OUTCOMES

After undergoing the subject, student will be able to:

CO1. Demonstrate the concept of multistage amplifiers and plot the frequency response of the same

CO2. Measure the bandwidth of multistage amplifier

CO3. Describe the operation of large signal amplifiers.

CO4. Demonstrate the concept of negative and positive feedback.

CO5. Measure the gain of emitter follower and push pull amplifiers

CO6. Plot the frequency response of oscillators(Hartley, Colpitt, Wein Bridge)

CO7. Explain the concept of feedback amplifiers

CO8. Plot the frequency response of tuned voltage amplifiers

CO9. Design various wave-shaping circuits(concepts of clipping and clamping)

CO10. Describe the concept of multi-vibrators and operational amplifiers

CO11. Demonstrate the working of operational amplifier as inverter, integrator, differentiator, adder and subtractor.

CO12. Describe the concept of regulated DC supplies and opto-electric devices, VCO and PLL

PO ⇒	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO D							
CO1							
CO2							
CO3							
CO4							
CO5		\bigcirc					
CO6							
CO7	0						
CO8							
CO9							
CO10	0						
CO11							
CO12							

Syllabus

Units	Details	Hours	
1.	Multistage Amplifiers - Need for multistage amplifier - Gain of multistage amplifier - Different types of multistage amplifier like RC coupled, transformer coupled, direct coupled, and their frequency response and bandwidth		
2.	Large Signal Amplifier Difference between voltage and power amplifiers - Importance of impedance matching in amplifiers - Class A, Class B, Class AB, and Class C amplifiers, collector efficiency and Distortion in class A,B,C - Single ended power amplifiers, Graphical method of calculation (without derivation) of out put power; heat dissipation curve and importance of heat sinks. Push-pull amplifier, and complementary symmetry push-pull amplifier	(08 hrs)	
3.	Feedback in Amplifiers - Basic principles and types of feedback - Derivation of expression for gain of an amplifier employing feedback - Effect of feedback (negative) on gain, stability, distortion and bandwidth of an amplifier - RC coupled amplifier with emitter bypass capacitor - Emitter follower amplifier and its application.	(08hrs)	
4.	Sinusoidal Oscillators - Use of positive feedback - Barkhausen criterion for oscillations - Different oscillator circuits-tuned collector, Hartley, Colpitts, phase shift, Wien's bridge, and crystal oscillator. Their working principles (no mathematical derivation but only simple numerical problems)	(08hrs)	
5.	Tuned Voltage Amplifiers - Series and parallel resonant circuits and bandwidth of resonant circuits Single and double tuned voltage amplifiers and their frequency response characteristics	(04hrs)	
6.	Wave Shaping Circuits - General idea about different wave shapers - RC and RL integrating and differentiating circuits with their applications - Diode clipping and clamping circuits.	(04 hrs)	
7.	Multivibrator Circuits - Working principle of transistor as switch - Concept of multi-vibrator: astable, monostable, and bistable and their applications - Block diagram of IC555 and its working and applications - IC555 as monostable and astable multi-vibrator	(08hrs)	
8.	Operational Amplifiers - Characteristics of an ideal operational amplifier and its block diagram 97 - Definition of differential voltage gain, CMRR, PSRR, slew rate and input offset current - Operational amplifier as an inverter, scale changer, adder, subtractor, differentiator, and integrator	(06 hrs)	
9.	Regulated DC Power Supplies - Concept of DC power supply. Line and load regulation - Concept of fixed voltage, IC regulators (like 7805, 7905), and variable voltage regulator like (IC 723)	(08 hrs)	
10.	VCO (IC 565) and PLL (IC 566) and their Applications	(02 hrs)	

Reference Books:

(1) Basic Electronics and Linear Circuits by NN Bhargava, Tata McGraw Hills, New Delhi

- (2) Electronic Principles by Sahdev, Dhanpat Rai and Sons, New Delhi.
- (3) Electronics Principles by Malvino, Tata McGraw Hills, New Delhi
- (4) Electronic Devices and Circuits by Millman and Halkias, McGraw Hills, New Delhi
- (5) Electronics Devices and Circuits by Bhupinderjit Kaur, modern Publishers, Jalandhar
- (6) Basic Electronics by Grob, Tata McGraw Hills, New Delhi

Delivery/Instructional Methodologies

Sr.No.	Description	
1.	Chalk and Talk	
2.	PowerPoint Presentation	

Assessment Methodologies

Sr. No.	Description	Туре
1.	Student Assignment	Direct
2.	Test	Direct
3.	Board Examination	Direct
4.	Student Feedback	Direct

Gaps in the syllabus - to meet industry/profession requirements

S.NO.	DESCRIPTION	PROPOSED ACTIONS	PO MAPPING
	N/A	N/A	N/A

Topics beyond syllabus/advanced topics

Units	Details	Hours
N/A	N/A	N/A

Web Source References

Sr. No.	URL
1.	https://nptel.ac.in/

Lesson Plan

Week		Theory	Practical	
	Lecture		Practical	
	Day		Day	
	1 st	Need ofmultistage amplifier.		
1 st	2 nd	Gain of multistage amplifie.r	1.	Plot the frequency response of two stage
	3 rd	Different types of multistage amplifier like RC coupled		RC coupled amplifier and calculate the bandwidth and compare it with single stage amplifier
	4 th	Transformer coupled		
	5 th	Direct coupled		
2 nd	6 th		2.	To measure the gain of
	7 th	Frequency response and		push-pull amplifier at 1KHz

	8 th	bandwidth		
3 rd	9 th	Difference between voltage and power amplifiers	3.	To measure the voltage gain of emitter
	10 th	Importance of impedance matching in amplifiers		follower circuit and plot its frequency response
	11 th	Class A, Class B, Class AB, and Class C amplifiers		
	12 th	Collector efficiency and		
4 th	13 th	Distortion in class A,B,C		
	14 th	Single ended power amplifiers, Graphical method of calculation (without derivation) of out put power	4.	Plot the frequency response curve of Hartley and Colpitt's Oscillator
	15 th	Heat dissipation curve and importance of heat sinks		
	16 th	Push-pull amplifier, and complementary symmetry push-pull amplifier		
	17 th	Basic principles and types of feedback		
5 th	18 th	Derivation of expression for gain of an amplifier employing feedback	5.	Plot the frequency response curve of phase shift and Wein
	19 th	Effect of feedback (negative) on gain,		bridge Oscillator

	20 th	stability, distortion and bandwidth of an amplifier		
	21st	RC coupled amplifier with emitter bypass capacitor		
6 th	22 nd			REVISION/VIVA
	23 rd	Emitter follower amplifier and its application	6.	VOICE
	24 th	1 st Sessional Test (Tentative)		
	25 th	Use of positive feedback		
7 th	26 th	Barkhausen criterion for oscillations	7.	To observe the output waveforms of series and shunt clipping circuits
	27 th	Different oscillator circuits-tuned collector		
	28 th	Hartley, Colpitts, phase shift,		
	29 th	Wien's bridge		
	30 th	Crystal oscillator		To observe the output
8 th	31 st	Their working principles (no mathematical	8.	for clamping circuits
	32 nd	derivation but only simple numerical problems)		
	33 rd	Series and parallel resonant circuits and		
	34 th	bandwidth of resonant circuits.		
9 th	35 th	Single and double tuned voltage amplifiers and	9.	Use of IC 555 as monostable multivibrator and
	36 th	their frequency response characteristics		observe the output for different values of RC

				1
	37 th	General idea about different wave shapers		
10 th	38 th	RC and RL integrating and differentiating circuits with their applications	10.	Use of IC 555 as astable multivibrator and observe the output at different duty cycles
	39 th	Diode clipping and clamping circuits .		
	40 th	Working principle of transistor as switch		
	41 st			
11 th	42 nd	Concept of multi-vibrator: astable, monostable, and bistable and their		
	43 rd	applications	11.	To use IC 741 (op- amplifier) as
	44 th	Block diagram of IC555 and its working and applications		i) Inverter, ii) Adder, iii) Subtractor iv) Integrator
	45 th	2 nd Sessional Test (Tentative)		
12 th	46 th	IC555 as monostable multi-vibrator	12.	To use IC 741 (op-
	47 th	IC555 as astable multi-vibrator	12.	amplifier) as i) Inverter, ii) Adder, iii) Subtractor iv)
	48 th	Characteristics of an ideal operational amplifier and its block diagram		Integrator

	49 th	Definition of differential voltage gain, CMRR		
13 th	50 th	PSRR, slew rate and input offset current	13.	REVISION/ VIVA VOICE
	51 st	Operational amplifier as an inverter, scale changer		
	52 nd	Operational amplifier as an adder, subtractor		
14 th	53 rd	Operational amplifier as an differentiator, and integrator	14	
	54 th	Concept of DC power		To realize positive and negative fixed voltage
	55 th	supply. Line and load regulation		AC power supply using three terminal voltage regulator IC (7805, 7812, 7905)
	56 th	Concept of fixed voltage		- ,,
	57 th	IC regulators (like 7805, 7905)		
15 th	58 th	Variable voltage regulator like (IC 723)	15.	Class Project: Fabricate any simple operational amplifier
	59 th	Class Test		circuit (Inverter, Adder, Subtractor etc.) and test it.
	60 th	VCO (IC 565) and PLL (IC 566) and their		
	61 st	Àpplications		
16 th	62 nd	РТМ		Practical Performance
	63 rd	REVISION	16.	Test
	64 th	3 rd Sessional Test (Tentative)		

NBA has defined the following seven POs for an Engineering diploma graduate:

i) **Basic and Discipline specific knowledge**: Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.

ii) **Problem analysis:** Identify and analyze well-defined engineering problems using codified standard methods.

iii) **Design/ development of solutions**: Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.

iv) **Engineering Tools, Experimentation and Testing**: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.

v) **Engineering practices for society, sustainability and environment**: Apply appropriate technology in context of society, sustainability, environment and ethical practices.

vi) **Project Management**: Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.

vii) **Life-long learning**: Ability to analyze individual needs and engage in updating in the context of technological changes.

Program Specific Outcomes (PSOs)

PSOs are a statement that describes what students are expected to know and be able to do in a specialized area of discipline upon graduation from a program. Program may specify 2-4 program specific outcomes, if required.

These are the statements, which are specific to the particular 11 program. They are beyond POs. Program Curriculum and other activities during the program must help in the achievement of PSOs along with POs.