<u>Ramgarhia Polytechnic College,</u> <u>Phagwara</u>

<u>Computer Science Engineering</u> <u>Department</u>

Head of Department:	Er. Poonam Rana		
Name of the Faculty:	Er. Simranjit Singh Kahlon		
Discipline:	CSE		
Semester:	3 rd		
Subject:	Digital Electronics		
Lesson Plan Duration:	16 Weeks		

RATIONALE

This course has been designed to make the students know about the fundamental principles of digital electronics and gain familiarity with the available IC chips. This subject aims to give a background in the broad field of digital systems design and microprocessors.

LEARNING OUTCOMES

After undergoing the subject, student will be able to:

- CO1. Verify and interpret truth tables for all logic gates.
- CO2. Realize all logic functions with NAND and NOR gates.
- CO3. Design half adder and full adder circuit.
- CO4. Demonstrate and design 4-bit adder, 2's complement subtractor.
- CO5. Verify and interpret truth tables for all flip flops.

CO6. Verify and interpret truth tables of multiplexer, de-multiplexer, encoder and decoder ICs.

- CO7. Design a four bit ring counter and verify its operation.
- CO8. Design 4-bit SISO, PISO, SIPO, PIPO shift registers.

PO ⇒	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO J							
CO1							
CO2							
CO3							
CO4		\bigcirc					
CO5		\bigcirc		\bigcirc			
CO6			\bigcirc				
CO7							
CO8							

Syllabus

	Cynabd3	[
Units	Details	Hours
1.	Introduction a) Distinction between analog and digital signal. b) Applications and advantages of digital signals	(02 hrs)
2.	Number System a) Binary, octal and hexadecimal number system: conversion from decimal and hexadecimal to binary and vice-versa. b) Binary addition, subtraction, multiplication and division including binary points. Sign magnitude method of representation, 1's and 2's complement method of addition/subtraction, floating point representation	(04 hrs)
3.	Codes and Parity a) Concept of code, weighted and non-weighted codes, examples of BCD, excess-3 and Gray code. b) Concept of parity, single and double parity and error detection and correction (Hamming code) c) Alpha numeric codes: ASCII, EBCDIC and Unicode.	(04 hrs)
4.	Logic Gates and Families a) Concept of negative and positive logic b) Definition, symbols and truth tables of gates. Construction of NOT, AND and OR gates from NAND and NOR gates (universal gates). (c) Introduction to TTL and CMOS logic families and their sub classification	(07 hrs)
5.	 Logic Simplification a) Postulates of Boolean algebra, De Morgan's Theorems. Various identities. Formulation of truth table and Boolean equation for simple problem. Implementation of Boolean (logic) equation with gates b) Karnaugh map (upto 4 variables) and simple application in developing combinational logic circuits 	(06 hrs)
6.	 Arithmetic circuits a) Half adder and Full adder circuit, design and implementation. b) Half and Full subtracter circuit, design and implementation. c) 4 bit adder/subtracter. d) Adder and Subtractor IC (7484) e) 2-bit comparator 	(06 hrs)
7.	Decoders, Multiplexers and De-Multiplexers (06 hrs) a) Basic functions and block diagram of Encoders and decoders. b) Basic functions and block diagram of Multiplexers and De- Multiplexers. Different types and ICs. c) Four bit decoder circuits for 7 segment display and decoder/driver ICs.	(06 hrs)

8.	Latches and flip flops a) Concept and types of latch with their working and applications b) Operation using waveforms and truth tables of RS, T, D, JK and Master/Slave JK flip flops. c) Difference between a latch and a flip flop d) Flip flop ICs	(06 hrs)
9.	 Shift Register Introduction and basic concepts including shift left and shift right. a) Serial in parallel out, serial in serial out, parallel in serial out, parallel in parallel out. b) Universal shift register c) Buffer register, Tristate Buffer register d) IC 7495 	(07 hrs)
10.	Countersa) Introduction to Asynchronous and Synchronous countersb) Binary up/down counters (upto MOD-8)c) Decade counter.d) Pre settable and programmable counterse) Ring counter with timing diagramf) Counter ICs	(08 hrs)
11.	 Analog to Digital and Digital to Analog Converters a) Working principle of A/D and D/A converters b) Detail study of : Binary Weighted D/A converter R/2R ladder D/A converter Brief idea about different techniques of A/D conversion and study of : Stair step Ramp A/D converter Dual Slope A/D converter Successive Approximation A/D Converter Performance characteristics of A/D and D/A converter. Applications of A/D and D/A converter. 	(08 hrs)

Reference Books:

- 1. Digital Electronics and Applications by Malvino Leach, Tata McGraw Hill Education Pvt Ltd, New Delhi.
- 2. Digital Logic Designs by Morris Mano, Prentice Hall of India, New Delhi

- 3. Digital Circuits and Design by DP Kothari and JS Dhillon, Pearson Publication, New Delhi
- 4. Digital Electronics by Soumitra Kumar Mandal, Tata McGraw Hill Education Pvt Ltd.
- 5. Digital Electronics by Tokheim, Tata McGraw Hill Education Pvt Ltd.
- 6. Digital Fundamentals by Thomas Floyds, Universal Book Stall
- 7. Digital Electronics by RP Jain, Tata McGraw Hill Education Pvt Ltd, New Delhi
- 8. Digital Electronics by KS Jamwal, Dhanpat Rai and Co., New Delhi

Delivery/Instructional Methodologies

Sr.No.	Description	
1.	Chalk and Talk	
2.	PowerPoint Presentation	

Assessment Methodologies

Sr. No.	Description	Туре
1.	Student Assignment	Direct
2.	Test	Direct
3.	Board Examination	Direct
4.	Student Feedback	Direct

Gaps in the syllabus - to meet industry/profession requirements

S.NO.	DESCRIPTION	PROPOSED ACTIONS	PO MAPPING
	N/A	N/A	N/A

Topics beyond syllabus/advanced topics

Units	Details	Hours
N/A	N/A	N/A

Web Source References

Sr. No.	URL
1.	https://nptel.ac.in/

Lesson Plan

Week		Theory	Practical	
	Lecture Day		Practical Day	
	1 st	Distinction between analog and digital signals		Verification and
1 st	2 nd	Applications and advantages of digital signals	1.	interpretation of truth tables for AND, OR, NOT NAND, NOR and Exclusive OR (EXOR)
	3 rd	Binary,Octaland hexadecimal number system: conversion from decimal and hexadecimal to binary		and Exclusive NOR(EXNOR) gates
	4 th	Vice- versa conversions.		
	5 th	Binary addition, subtraction,division		Realisation of logic functions with the help
2 nd	6 th	1's and 2's complement method of addition/ subtraction, floating point	2.	of NAND or NOR gates

		representation.		
	7 th	Concept of code, weighted and non weighted codes,BCD, EXCESS-3 AND GRAY CODE		
	8 th	Concept of parity,single and double parity and error detection and		
	9 th	correction(Hamming Code)		
3 rd	10 th	Alpha numeric codes ASCII,EBCDIC	3.	Design of a NOR gate latch and verification of its operation
	11 th	Concept of negative and positive logic		
	12 th			
	13 th	 Definition , Symbol and truth tables of logic gates. NOT, AND AND OR gate from NAND and NOR gates Introduction to TTL and CMOS logic families and their sub classifications. 	4.	 To design a half adder using XOR and NAND gates and verification of its operation Construction of a full adder circuit using XOR and NAND gates and verify its operation
4 th	14 th			
	15 th			
	16 th			
	17 th			To design 4 bit adder, 2's complement subtractor circuit using an 4 bit adder IC and an XOR IC and verify the operation of the circuit.
5 th	18 th	Postulates of Boolean algebra, De morgan's theorems Various identities formulation of truth table	5.	
	19 th			
	20 th	 and Boolean equation for simple problem. 		
6 th	21st	Implementation of Boolean equations with gates	6.	To design a NOR Gate Latch and verification of its operation

	22 nd 23 rd	Karnaugh map and simple application in developing combinational logic circuits		
	24 th	1 st Sessional Test (Tentative)		
	25 th	Half adder and full adder circuit design and implementation		Verification of truth table for positive edge triggered, negative
7 th	26 th	Half and full subtractor circuit design and implementation	7.	edge triggered, level triggered IC flip-flops (At least one IC each
	27 th	4 bit adder and subtractor		of D latch , D flip-flop, JK flip-flops).
	28 th	Adder and subtractorIC(7484)		
	29 th	2-bit comparator		Verification of truth table for encoder and
	30 th	REVISION		decoder ICs, Mux and DeMux
8 th	31 st	Basic function and block diagram of encoders and decoders	8.	
	32 nd			
	33 rd	Basic functions and block diagram o multiplexers		To design a 4 bit SISO, SIPO, PISO, PIPO
	34 th	 and demultiplexers. Different types of IC's 		shift registers using JK/D flip flops and verification of their
9 th	35 th	Four bit decoder circuits for seven segment	9.	operation.
	36 th	 display and decoder/driver Ic's 		
	37 th	Concept and types of latch with their working and applications		To design a 4 bit SISO, SIPO, PISO, PIPO shift registers using JK/D flip flops and verification of their
10 th			10.	operation.

10 th	38 th 39 th 40 th	Operation using waveforms and truth tables of RS,T,D,JK AND MASTER /SLAVE JK Flip Flops		
	41 st	Difference between latch and a flip flop		
11 th	42 nd	Flip flop Ic's	11.	To design a 4 bit ring counter and verify its operation.
	43 rd			
	44 th	SISO,SIPO shift resgisters		
12 th	45 th	РТМ		
	46 th	2 nd Sessional Test (Tentative)	12.	REVISION/VIVA VOICE
	47 th	PISO,PIPO shift resgiters, Universal shift register		
	48 th	Buffer register, Tristate		
13 th	49 th	 Buffer register 		Asynchronous Counter
	50 th	IC7495 Introduction to Asynchronous and synchronous counters	13.	ICs Verification of truth table for any one universal shift register IC Use of IC 7490 or equivalent TTL (a) divide by 2 (b) divide by 10 Counter
	51 st			
	52 nd	Binary up/down counters		

14 th	53 rd 54 th	Decade counters Pre settable and programmable counters	14	Use of IC 7493 or equivalent TTL (a) divide by 2 (b) divide by 8 (c) divide by 16 counter
	55 th	Ring counter with timing diagram		
	56 th	Counters IC'S		
	57 th	Working principle of A/D and D/a converters		
15 th	58 th	Binary weighted D/A converter and R/2R ladder D/A converter Stair step ramp A/D converter,dual slope A/D converter,successive approximation A/D	15.	Practical performance TEST
	59 th			
	60 th	converter		
16 th	61 st	Performance characteristics of A/D and D/A converters.		
	62 nd	Applications of A/D and D/A converters PTM	16.	Practical performance TEST
	63 rd			
	64 th	3 rd Sessional Test (Tentative)		